0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaA9 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
if (y > 0) {
while (x >= z) {
z += y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 3 rules for R.
Combined rules. Obtained 1 rules for P and 0 rules for R.
Filtered ground terms:
1029_0_main_LT(x1, x2, x3, x4, x5, x6) → 1029_0_main_LT(x2, x3, x4, x5, x6)
Cond_1029_0_main_LT(x1, x2, x3, x4, x5, x6, x7) → Cond_1029_0_main_LT(x1, x3, x4, x5, x6, x7)
Filtered duplicate args:
1029_0_main_LT(x1, x2, x3, x4, x5) → 1029_0_main_LT(x2, x4, x5)
Cond_1029_0_main_LT(x1, x2, x3, x4, x5, x6) → Cond_1029_0_main_LT(x1, x3, x5, x6)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] >= 0 && x2[0] <= x0[0] && x1[0] > 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1])∧(x2[0] →* x2[1]))
(1) -> (0), if ((x1[1] →* x1[0])∧(x0[1] →* x0[0])∧(x2[1] + x1[1] →* x2[0]))
(1) (&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x2[0]=x2[1] ⇒ 1029_0_MAIN_LT(x1[0], x0[0], x2[0])≥NonInfC∧1029_0_MAIN_LT(x1[0], x0[0], x2[0])≥COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])∧(UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>=(x2[0], 0)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ 1029_0_MAIN_LT(x1[0], x0[0], x2[0])≥NonInfC∧1029_0_MAIN_LT(x1[0], x0[0], x2[0])≥COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])∧(UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)
(6) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x2[0] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x1[0] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[1 + (-1)bso_17] + x1[0] ≥ 0)
(8) (&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x2[0]=x2[1]∧x1[1]=x1[0]1∧x0[1]=x0[0]1∧+(x2[1], x1[1])=x2[0]1 ⇒ COND_1029_0_MAIN_LT(TRUE, x1[1], x0[1], x2[1])≥NonInfC∧COND_1029_0_MAIN_LT(TRUE, x1[1], x0[1], x2[1])≥1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))∧(UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥))
(9) (>(x1[0], 0)=TRUE∧>=(x2[0], 0)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_1029_0_MAIN_LT(TRUE, x1[0], x0[0], x2[0])≥NonInfC∧COND_1029_0_MAIN_LT(TRUE, x1[0], x0[0], x2[0])≥1029_0_MAIN_LT(x1[0], x0[0], +(x2[0], x1[0]))∧(UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥))
(10) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x2[0] + [bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(11) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x2[0] + [bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(12) (x1[0] + [-1] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x2[0] + [bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(13) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥)∧[(-2)bni_18 + (-1)Bound*bni_18] + [(-1)bni_18]x2[0] + [bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(14) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))), ≥)∧[(-2)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] + [(-1)bni_18]x1[0] ≥ 0∧[(-1)bso_19] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(1029_0_MAIN_LT(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(COND_1029_0_MAIN_LT(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
1029_0_MAIN_LT(x1[0], x0[0], x2[0]) → COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])
1029_0_MAIN_LT(x1[0], x0[0], x2[0]) → COND_1029_0_MAIN_LT(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], 0)), x1[0], x0[0], x2[0])
COND_1029_0_MAIN_LT(TRUE, x1[1], x0[1], x2[1]) → 1029_0_MAIN_LT(x1[1], x0[1], +(x2[1], x1[1]))
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer